7,885 research outputs found

    Electroweak Sudakov at two loop level

    Get PDF
    We investigate the Sudakov double logarithmic corrections to the form factor of fermion in the SU(2)XU(1) electroweak theory. We adopt the familiar Feynman gauge and present explicit calculations at the two loop level. We show that the leading logarithmic corrections coming from the infrared singularities are consistent with the "postulated" exponentiated electroweak Sudakov form factor. The similarities and differences in the "soft" physics between the electroweak theory and the unbroken non-abelian gauge theory (QCD) will be clarified.Comment: 8 pages, 14 figure

    Statistical mechanics and large-scale velocity fluctuations of turbulence

    Full text link
    Turbulence exhibits significant velocity fluctuations even if the scale is much larger than the scale of the energy supply. Since any spatial correlation is negligible, these large-scale fluctuations have many degrees of freedom and are thereby analogous to thermal fluctuations studied in the statistical mechanics. By using this analogy, we describe the large-scale fluctuations of turbulence in a formalism that has the same mathematical structure as used for canonical ensembles in the statistical mechanics. The formalism yields a universal law for the energy distribution of the fluctuations, which is confirmed with experiments of a variety of turbulent flows. Thus, through the large-scale fluctuations, turbulence is related to the statistical mechanics.Comment: 7 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    Non-equilibrium and non-linear stationary state in thermoelectric materials

    Full text link
    Efficiency of thermoelectric materials is characterized by the figure of merit Z. Z has been believed to be a peculiar material constant. However, the accurate measurements in the present work reveal that Z has large size dependence and a non-linear temperature distribution appears as stationary state in the thermoelectric material. The observation of these phenomena is achieved by the Harman method. This method is the most appropriate way to investigate the thermoelectric properties because the dc and ac resistances are measured by the same electrode configuration. We describe the anomalous thermoelectric properties observed in mainly (Bi,Sb)2Te3 by the Harman method and then insist that Z is not the peculiar material constant but must be defined as the physical quantity dependent of the size and the position in the material.Comment: 9 pages, 4 figures. submitted to Applied Physics Lette

    Dual-camera system for high-speed imaging in particle image velocimetry

    Full text link
    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.Comment: 4 pages, accepted by Journal of Visualization (see http://www.springerlink.com

    Trends of mechanical consequences and modeling of a fibrous membrane around femoral hip prostheses

    Get PDF
    In the present study, the effects of a fibrous membrane between cement and bone in a femoral total hip replacement were investigated. The study involved the problem of modeling this fibrous membrane in finite-element analyses, and its global consequences for the load-transfer mechanism and its resulting stress patterns. A finite-element model was developed, suitable to describe nonlinear contact conditions in combination with nonlinear material properties of the fibrous membrane. The fibrous tissue layer was described as a highly compliant material with little resistance against tension and shear. The analysis showed that the load transfer mechanism from stem to bone changes drastically when such a membrane is present. These effects are predominantly caused by tensile loosening and slip at the interface, and are enhanced by the nonlinear membrane characteristics.\ud \ud Using parametric analysis, it was shown that these effects on the load-transfer mechanism cannot be described satisfactorily with linear elastic models.\ud \ud Most importantly, the fibrous tissue interposition causes excessive stress concentrations in bone and cement, and relatively high relative displacements between these materials

    Diameter dependence of ferromagnetic spin moment in Au nanocrystals

    Get PDF
    Au nanoparticles exhibit ferromagnetic spin polarization and show diameter dependence in magnetization. The magnetic moment per Au atom in the particle attains its maximum value at a diameter of about 3 nanometer (nm) in the Magnetization-Diameter curve. Because Au metal is a typical diamagnetic material, its ferromagnetic polarization mechanism is thought to be quite different from the ferromagnetism observed in transition metals. The size effect strongly suggests the existence of some spin correlation effect at the nanoscale. The so-called ``Fermi hole effect'' is the most probable one given in the free electron gas system. Ferromagnetism in Au nanoparticles is discussed using this model.Comment: 5 pages, 6 figures, to appear in Phys. Rev.

    D-brane Categories for Orientifolds -- The Landau-Ginzburg Case

    Get PDF
    We construct and classify categories of D-branes in orientifolds based on Landau-Ginzburg models and their orbifolds. Consistency of the worldsheet parity action on the matrix factorizations plays the key role. This provides all the requisite data for an orientifold construction after embedding in string theory. One of our main results is a computation of topological field theory correlators on unoriented worldsheets, generalizing the formulas of Vafa and Kapustin-Li for oriented worldsheets, as well as the extension of these results to orbifolds. We also find a doubling of Knoerrer periodicity in the orientifold context.Comment: 45 pages, 6 figure

    Vortex Tubes in Turbulence Velocity Fields at Reynolds Numbers 300-1300

    Full text link
    The most elementary structures of turbulence, i.e., vortex tubes, are studied using velocity data obtained in a laboratory experiment for boundary layers with microscale Reynolds numbers 295-1258. We conduct conditional averaging for enhancements of a small-scale velocity increment and obtain the typical velocity profile for vortex tubes. Their radii are of the order of the Kolmogorov length. Their circulation velocities are of the order of the root-mean-square velocity fluctuation. We also obtain the distribution of the interval between successive enhancements of the velocity increment as the measure of the spatial distribution of vortex tubes. They tend to cluster together below about the integral length and more significantly below about the Taylor microscale. These properties are independent of the Reynolds number and are hence expected to be universal.Comment: 8 pages, to appear in Physical Review

    Diffusion and spectral dimension on Eden tree

    Full text link
    We calculate the eigenspectrum of random walks on the Eden tree in two and three dimensions. From this, we calculate the spectral dimension dsd_s and the walk dimension dwd_w and test the scaling relation ds=2df/dwd_s = 2d_f/d_w (=2d/dw=2d/d_w for an Eden tree). Finite-size induced crossovers are observed, whereby the system crosses over from a short-time regime where this relation is violated (particularly in two dimensions) to a long-time regime where the behavior appears to be complicated and dependent on dimension even qualitatively.Comment: 11 pages, Plain TeX with J-Phys.sty style, HLRZ 93/9
    • 

    corecore